skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luo, Jingchuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The nucleolus is the most prominent membraneless compartment within the nucleus—dedicated to the metabolism of ribosomal RNA. Nucleoli are composed of hundreds of ribosomal DNA (rDNA) repeated genes that form large chromosomal clusters, whose high recombination rates can cause nucleolar dysfunction and promote genome instability. Intriguingly, the evolving architecture of eukaryotic genomes appears to have favored two strategic rDNA locations—where a single locus per chromosome is situated either near the centromere (CEN) or the telomere. Here, we deployed an innovative genome engineering approach to cut and paste to an ectopic chromosomal location—the ~1.5 mega-base rDNA locus in a single step using CRISPR technology. This “megablock” rDNA engineering was performed in a fused-karyotype strain ofSaccharomyces cerevisiae. The strategic repositioning of this locus within the megachromosome allowed experimentally mimicking and monitoring the outcome of an rDNA migratory event, in which twin rDNA loci coexist on the same chromosomal arm. We showed that the twin-rDNA yeast readily adapts, exhibiting wild-type growth and maintaining rRNA homeostasis, and that the twin loci form a single nucleolus throughout the cell cycle. Unexpectedly, the size of each rDNA array appears to depend on its position relative to theCEN, in that the locus that isCEN-distal undergoes size reduction at a higher frequency compared to theCEN-proximal counterpart. Finally, we provided molecular evidence supporting a mechanism called paralogouscis-rDNA interference, which potentially explains why placing two identical repeated arrays on the same chromosome may negatively affect their function and structural stability. 
    more » « less